
Decision making
algorithms

in Battle AI creation.

Robyn Botham

Images will be in these blocks

Player controls

Attack

Jump

Defence

Special Attack

Move camera

Move

move

Camera
move

Special attack

Jump

Defence

Attack

Introduction
My project was about looking into decision making algorithms for Ais in battle
situations. I then created a battle system and combat based AIs which could
reasonably play against a human player using these algorithms.

The inspirations for the project and the battle style I was emulating is the battle
style commonly found in JRPGs such as: Tales of Vesperia (Bandai Namco, 2008)
and Kingdom Hearts (Square Enix, 2002). These include more closed battle spaces
where strategy can be focused on more than pathfinding and navigation of
complicated surroundings, and often very narrative based battles.

At the beginning of the project, I set out a list of aims I wanted to achieve by the
end:

❖ Steering behaviours

The AIs will have the ability to navigate their surroundings.

❖ Decision making algorithms

To explore multiple decision-making algorithms to create an AI which can be fought
against by a human player.

❖ Player controls

The player should be able to navigate the scene, attack and interact with enemies.

❖ Health system

The player and AI can both attack each other and cause damage if the attack hits.

❖ Attack implementation

Multiple types of attack which can be used by the AI in different situations,
implemented in a way which makes it easy to add more if wanted.

Decision Making Algorithms

The preproduction phase of the project was used to investigate different

decision-making algorithms.

Finite state machines (FSM) separate possible behaviours done by an AI into

states which all have their own functionality. Each state has transitions that

when certain conditions are met the AI will swap to a different state [1].

FSMs can only be in one state at a time which can lead to predictable behaviour

without the inclusion of fuzzy logic, which can adjust the chances of

transitioning to another state, so that it's not always definite. This may be done

by randomising values used in the transitions between instances of the AI or

multiplying the values, or having multiple states which could be transitioned to

with different chances of which will be, and the chances could be altered

between instances of the AI to further randomise it [2].

There was also the possibility of using fuzzy state machines which allow for

more complex behaviour by allowing the AI to be in multiple states at once, at

different degrees called “active levels”[3]. These active levels are how

committed to the state the AI is at any given time, and the update for all states

which are currently active will be called [4]. This gets rid of transitions between

states, which means adding states and transitions can be less complex than basic

FSMs but can make it harder to get the desired behaviour.

Decision trees use a basic binary tree

pattern to decide behaviour based on conditions.

The AI traverses down the tree from a root node,

checking whether conditions are true or false

until it reaches a root node which will perform

an action. This approach shares many of the

same issues as basic FSMs in that it can create

very predictable behaviour, and the more lead

nodes added the more conditions will have to

be checked before an action can be performed, causing possible performance

issues [5].

Behaviour trees follow a tree pattern like

decision trees but have more functionality. The tree

also does not need to be traversed from the root each time, as

each node can return one of three states: success, failure or

running, running will recall the node until it returns either

success or failure, or is aborted.

Behaviour tree nodes have different types: control flow nodes,
decorators, conditions and execution nodes.

Control flow nodes decide how the tree is traversed. Selector
nodes traverse their children either left to right or randomised
and will continue to try each child node until one succeeds, it

will only return failure if all children fail. Sequence nodes run all their children,
usually from left to right but this can also be randomised, as soon as one child fails
it will stop and return failure [6].

Decorators allow for actions to be rerepeated, affecting the return value of their
children, cooldowns and time limits to stop nodes running if they don't return
success of failure after a set time [7].

Conditions checks whether something in the current state of the world are true or
false and decide actions based on this [6].

Execution nodes are the actual behaviours the AI will perform [ibid].

Goal oriented action planning (GOAP) is an approach where an AI can plan
a sequence of actions to reach a goal, based on its current state and the end state.
Pathfinding is used to find the best path of actions to the desired state, but it
means different agents and different situations can complete different sequences
of actions, creating more realistic behaviour, this approach was used in F.E.A.Rs AI,
alongside an FSM [8].

The algorithm works backwards from the goal state, looking at what conditions
need to happen to get there compared to the Ais current state, it will then try to
find actions which will produce the correct conditions. E.g. if the goal is to go into
a room, you may need to: check if the door is unlocked, see if they have a key, find
a key if not, etc. None of these actions would be prearranged but instead arranged
by the AI, actions will be weighted by how hard they are to do, and the AI will pick
the path with the least actions to achieve the goal, or the path with the least
weight [9].

Decision Algorithms used
The different algorithms discussed have different best use cases that must be
considered in development.

Finite state machines for example are extremely common but as prementioned can
lead to predictable behaviour, but as well as this they are difficult to use for a
complex AI, due to the number of transitions which must be programmed to add a
new state. They can be extremely good for testing, because each state can be
tested on its own, but testing transitions can be harder and handling transitions to
make them look natural can get harder the more there are. Therefore, FSMs are
better suited to simpler enemies, often with a shorter lifespan to stop the player
having the chance to learn their pattern.

Decision trees can appear even more predictable than finite state machines and
are overall less efficient. The project originally explored use of decision trees,
which was dropped due to it creating rigid behaviour, unlike behaviour trees it also
doesn’t allow for behaviour sequencing which can make it difficult to get an AI to
perform a single goal, and due to the fact that the tree is run every frame,
behaviour thrashing was common due to less control over transitions between
states (e.g. in a state machine transitions can be delayed or some states can't be
transitioned to at all without an intermediate state, this is not true for decision
trees, unless this is included in a decision node. Decision trees may be more useful
in simpler contexts with less possible variables, such as for picking most suitable
attacks for in a situation, which is something the project will likely be extended to
include in the future.

Behaviour trees work well in an AI setting because they can be very easily adjusted
as a response for testing. Behaviour trees were used for the main AI in the artefact.
Their biggest advantage was their visual nature, their logic could very easily be
changed and rearranged to create better strategy or feeling for the player. Having
control nodes and decorators allowed for far more controlled behaviour and the
tree could easily handle more complex behaviours, and more randomised seeming
behaviour. This approach was better than FSMs because a behaviour could be
repeated in different parts of the tree but have different conditions leading up to
it. It could also be picked randomly by a selector or sequence making behaviour
feel less deterministic, whereas FSMs have fixed transitions that don’t change
based on the world state (e.g. behaving different based on HP to TP, as the main
enemy does).

Goal oriented action planning was not used in the project, it has some pros and
cons in the context of the artefact in terms of less deterministic behaviour and
more realistic actions, but does give the AI programmer less control over the
actions of an AI, and is better suited to larger and more complex environments,
many of the actions in the artefact are quite simple, or don’t require a large
number of tasks in between, they're also performed symmetrically most times,
would lead to the actions still appearing deterministic. GOAP may therefore be a
too complex implementation for the context and may in some cases create worse
behaviour due to that lack of control.

Player
The player has been given the functionality to use

player input in multiple ways to fight the AIs
 in the scene.

 Move – the player can move left,
 right, forward and backwards,
 the direction of movement is
 linked to the position of the
 camera, so they will always
 move relative to the camera
 rotation, rather than the worlds
 axis.

 Camera Move – the camera is done with
 Cinemachine to create less jarring
 movement, as it moves relative to the

 player but not at the same speed. The
player can spin the camera at a set distance
from the player to view different parts of
the scenery.

 Jump/ double jump – the player can jump
 and double jump. Jumping is limited
 to two jumps until they collide with the
 floor again.

 Attack – the player can melee attack
 the enemy, if an attack is performed
 while colliding with the enemy then it
 will apply damage to them and
 increase some of the players TP.

 Special attack – special attacks take up the
players TP but can be used to attack the
enemy from a range and does more damage
on average than a melee attack.

 Defence – the player can defend themselves
when attacked, this will reduce the effect
of an attack on the players HP by a certain
percentage. Its active so long as the defence
button is being pressed down, but while it’s
active the player cannot also move or jump.

Steering behaviours
All of the steering behaviours are contained in a component which can easily be
added to any Game Object which needs to navigate around the world and contain a
NavMeshAgent component. To change which steering behaviour is being used,
another component just has to call SetNewNavigation(), which starts the relevant
coroutine.

SetNewNavigation has 4 overloads:

❖ SetNewNavigation(steering behaviour, GameObject object) – used
to steer relative to an object.

❖ SetNewNavigation(steering behaviour, Vector3 target) – used to
steer relative to a position.

❖ SetNewNavigation(steering behaviour) – used to start steering which
doesn’t require an object or position reference (e.g. wander and idle)

❖ SetNewNavigation(Attack attack) – used to start steering for an attack.

Seek object – seeks towards an object, this function updates the location it is
seeking every frame so it can account for the object it's seeking's movement.

Seek location – seeks towards a set, vector3 location which is set at the beginning
of the function.

Seek to attack – each attack has a minimum or maximum distance from the player
in order to perform it, this function navigates to somewhere between that range if
necessary.

Flee object – flees from an object until it's a set distance away, accounts for the
object's movement.

Flee position – flees from a set vector3 position until a defined distance away.

Wander – picks a random point within the battle circle and navigates towards it.

Finite State Machine
The mini enemies which are spawnable by the main enemy run using a finite state
machine with 8 different states: Idle, Seek, Wander, Defend, Attack, Flee and
Attacked. There is a 50% chance that the main enemy will spawn in 1-3 mini
enemies when the player is playing offensively (damage or attack number over a
defined amount in the last minute.) There is a limit on how many mini enemies can
be spawned in the scene at any given time.

The mini enemies were designed to be smaller, simpler enemies to distract the
player. Their purpose, rather than survival and attack strategy like the main enemy,
their only aim is to attack the player and defend the main enemy.

The addition of the three states: idle, flee and wander, were to increase how
natural the enemy felt as well as fairness. Idle and flee are both to make it so the
mini enemy is not constantly in a state of hunting down the player, wander is there
to make it so if you go out of range the enemy ‘forgets’ the player, which
thematically would be expected of a clone enemy.

Fuzzy logic

An issue came up in development was the mini enemies behaving symmetrically.
There was occasions where all enemies would end up behaving the same at the
same time and becoming a hoard following you, rather than seeming intelligent.
There was multiple possible solutions to the problem considered:

• Congestion maps – instead of following an idealised
path the pathfinding the pathfinding considers
congestion and discourages movement through crowded
areas by increasing the cost in those areas for the A*
algorithm [10]. This approach wasn’t feasible within the
time limit as it would require making custom
pathfinding instead of the type already built into Unity's
navmesh agents.

• Fuzzy logic – reduce the chance of multiple agents having a shared goal or
changing how they act while in that role, by changing values between agents or
changing the chances of whether you transition to a state [11]. A possible way of
implementing this considered was to have randomised intelligence values acting
as a percentage, which controlled a thinking time before going into that state or
the intelligence value being the chance of picking the best option or dumber
option.

In the end, fuzzy logic was used. The distance to seek, defend, the Ais speed, as
well as an artificial break before beginning actions to simulate thinking time were
used to avoid them acting the same.

!(colliding with player)

Player not
close to main

enemy
In player vicinity

Player close to
main enemy

Time in idle
> max time In player

vicinity
Player collision

!in player
vicinity

!player collision

HP <= 0

FUN FACT:

The FSM script has no central update
loop.

Transition any is called by an event
when the mini enemy is attacked.

All the other states are coroutines that
loop while the enemy is still in that
state, running code every fixed update
including a transition function which
checks if they need to swap to another
state.

If another state is needed, an event is
called which will call a StateChange
function within the same script!

B
e
h
a
v
io

u
r

T
re

e

Battle System

Any damage dealt in the game is done
through that objects battle script. All Ais in
the scene use the base BattleScript, this
allows you to:

- set battle stats

- handling of damage taken

- get and set the AIs current HP and TP.

Attack implementation is done by the AI’s
relevant strategy script, which only uses
battle script to check health, check TP or
set TP when an attack is performed. It also
shoots off an event when attacked which can
be responded to accordingly.

The players battle script class inherits the
functionality of its parent class, but with the
added functionality of handling the players
battle related inputs. This made it easier to
check battle related variables and modify
damage values without referencing another
script as those values were already member
variables, unlike with the AIs strategy
scripts.

Attacks
Attacks are stored in a scriptable object containing all the information about an
attack. Attacks can be easily added to an enemy via simply adding them here,
which gives the AI access to them.

Minimum distance to perform – the closest to the player you can be to perform
the attack.

Maximum distance to perform – the furthest away from the player you can be to
perform the attack.

Freeze time – after performing the attack movement and other actions will be
locked until freeze time is over, this is usually at least the length of time it takes to
perform the attack animation.

TP Decrease – how many tactical points are lost through performing the attack.

Attack name – the name of the attack

Attack damage – how much base damage the attack
will cause without any modifiers

Attack object – if the attack spawns an object
(common in range attacks) it should be included
here.

Animation – the animation performed by the
character when the attack is called.

Attack type – an enum with 3 types: melee, range
and special which are used to split up the attack
pools, different attacks are used in different
scenarios.

Reflection
The project has successfully implemented two decision making algorithms,
explored another and investigated other decision-making algorithms, which were
not used as they were not the best use case. The Ais can react to their
surroundings and the players actions and respond to them reasonably, though not
the level of complexity I had originally intended.

Many of the issues affecting the AIs in their final submission state is aesthetically,
such as animations, attacks, sound effects etc. These were not the purpose of the
artefact, but have a large effect of player experience, as a lot of game AI focusses
on the illusion of intelligence rather than actual intelligence, therefore aesthetic
issues can be jarring and make the AI feel unnatural, even though it might be
acting in the way I intended, it also makes it appear under a professional level[12].

Some issues in why the AIs did not reach my expectations, or not as many
algorithms were explored in code as initially intended, it due to decision trees
being dropped from the project. The development of the decision tree which is not
included took up a large portion of development time, this was a good learning
experience and shows how different algorithms can affect the end product, as well
as learning more about the characteristics of that form of decision making. It has
significantly furthered my own knowledge, knowing when and if to use that
algorithm in the future, there is an intention to use it for attack picking, but did
lead to a significant loss of time for an AI which was not included.

A large learning curve to the project was learning that often the best way for the AI
to act, is not the way that should be implemented. If an AI behaves in the ‘perfect’
way, this can feel unnatural or unfair, or even jarring for the player and reduce
enjoyment. Therefore, artificial waiting, thinking time, etc. had to be added to the
AI, perfecting how long idle times should be and the fuzzy logic to make the AI
decide ‘dumber’ actions while making it still seem natural, was one of the hardest
parts of developing the AIs behaviour and continues to have issues in the final
implantation, though has vastly improved. This was a large cause of dropping
decision trees and is also a large fault in the mini enemies' finite state machines.

Moving forward with development after the module is finished, I want to work on
picking better attacks for a situation, likely via using a decision tree. I also want to
work on making it more aesthetically enjoyable, adding more attacks and more
complex and fun battle strategies for the player. Some of these additions were not
part of the core project, as they are not related to decision making, but through
the development process I have learnt how important they are to the overall
illusion and feeling developers are trying to create for the player

Sources
1. Özer, M. C. Finite State Machine (FSM) Based Agent. Available at:

http://www.mcihanozer.com/tips/artificial-intelligence/finite-state-machine-
fsm-based-agent/

2. Sayantini. 2023. What is Fuzzy Logic in AI and What are its Applications?.
Available from: https://www.edureka.co/blog/fuzzy-logic-ai/

3. J. Li, Z. Wang and Y. Zhang, 2011. "An Implementation of Artificial Emotion
Based on Fuzzy State Machine," 2011 Third International Conference on
Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China pp. 83-
86, doi: 10.1109/IHMSC.2011.90.

4. Roberts, P. 2022. Artificial Intelligence in Games, Taylor & Francis Group.
ProQuest Ebook Central,
https://ebookcentral.proquest.com/lib/staffordshire/detail.action?docID=7007
113.

5. What is a Decision Tree?. IBM. Available at:
https://www.ibm.com/topics/decision-trees

6. Simpson, C. 2014. Behavior trees for AI: How they work. Game Developer.
Available at: https://www.gamedeveloper.com/programming/behavior-trees-
for-ai-how-they-work

7. Decorators. BehaviourTree.dev. Available at:
https://www.behaviortree.dev/docs/nodes-library/decoratornode/

8. Thompson, T. 2020. Building the AI of F.E.A.R with Goal Oriented Action
Planning. Game Developer. Available at:
https://www.gamedeveloper.com/design/building-the-ai-of-f-e-a-r-with-goal-
oriented-action-planning

9. Owens, B. 2014. Goal Oriented Action Planning for a Smarter AI. Envatotuts.
Available at: https://gamedevelopment.tutsplus.com/goal-oriented-action-
planning-for-a-smarter-ai--cms-20793t

10.Pentheny, G. 2015. Advanced Techniques for Robust, efficient crowds. Chapter
17. Available at:
http://www.gameaipro.com/GameAIPro2/GameAIPro2_Chapter17_Advanced_Te
chniques_for_Robust_Efficient_Crowds.pdf

11.Roberts, P. 2022. Artificial Intelligence in Games, Chapter 7. Taylor & Francis
Group. ProQuest Ebook Central,
https://ebookcentral.proquest.com/lib/staffordshire/detail.action?docID=7007
113.

12.Rabin, S. 2017. The illusion of intelligence. Chapter 1. Taylor & Francis.
Available at:
http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter01_The_Illusion_
of_Intelligence.pdf

http://www.mcihanozer.com/tips/artificial-intelligence/finite-state-machine-fsm-based-agent/
http://www.mcihanozer.com/tips/artificial-intelligence/finite-state-machine-fsm-based-agent/
https://www.edureka.co/blog/fuzzy-logic-ai/
https://ebookcentral.proquest.com/lib/staffordshire/detail.action?docID=7007113
https://ebookcentral.proquest.com/lib/staffordshire/detail.action?docID=7007113
https://www.ibm.com/topics/decision-trees
https://www.gamedeveloper.com/programming/behavior-trees-for-ai-how-they-work
https://www.gamedeveloper.com/programming/behavior-trees-for-ai-how-they-work
https://www.behaviortree.dev/docs/nodes-library/decoratornode/
https://www.gamedeveloper.com/design/building-the-ai-of-f-e-a-r-with-goal-oriented-action-planning
https://www.gamedeveloper.com/design/building-the-ai-of-f-e-a-r-with-goal-oriented-action-planning
https://gamedevelopment.tutsplus.com/goal-oriented-action-planning-for-a-smarter-ai--cms-20793t
https://gamedevelopment.tutsplus.com/goal-oriented-action-planning-for-a-smarter-ai--cms-20793t
http://www.gameaipro.com/GameAIPro2/GameAIPro2_Chapter17_Advanced_Techniques_for_Robust_Efficient_Crowds.pdf
http://www.gameaipro.com/GameAIPro2/GameAIPro2_Chapter17_Advanced_Techniques_for_Robust_Efficient_Crowds.pdf
https://ebookcentral.proquest.com/lib/staffordshire/detail.action?docID=7007113
https://ebookcentral.proquest.com/lib/staffordshire/detail.action?docID=7007113
http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter01_The_Illusion_of_Intelligence.pdf
http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter01_The_Illusion_of_Intelligence.pdf

Assets
AI Navigation 1.1.4 – Unity Technologies Inc. [package]

Cinemachine 2.9.5 – Unity Technologies Inc. [package]

Input System 1.6.1 – Unity Technologies Inc. [package]

Toki no Kagi – Selkione [music] (available at: https://selkione.itch.io/nitro-music-
rumble)

Jacob – Jupifox [3D Model] (available at: https://jupifox.itch.io/jacob-game-ready-
character)

Asougi – Hitsuji 15 [3D Model] (available at:
https://assetstore.unity.com/packages/p/asougi-205096)

Hyper Casual FX – Lana Studio [Particle Effects] (available at
https://assetstore.unity.com/packages/vfx/particles/hyper-casual-fx-200333)

MonoBehaviourTree 1.2.0 – Qriva [package] (available at
https://assetstore.unity.com/packages/tools/behavior-ai/monobehaviourtree-
213452)

Simple Sky – Synty Studios [Skybox] (available at:
https://assetstore.unity.com/packages/3d/environments/simple-sky-cartoon-
assets-42373)

Lowpoly Environment – Polytope Studio [3D environment model] (available at:
https://assetstore.unity.com/packages/3d/environments/lowpoly-environment-
nature-free-medieval-fantasy-series-187052)

https://selkione.itch.io/nitro-music-rumble
https://selkione.itch.io/nitro-music-rumble
https://jupifox.itch.io/jacob-game-ready-character
https://jupifox.itch.io/jacob-game-ready-character
https://assetstore.unity.com/packages/p/asougi-205096
https://assetstore.unity.com/packages/vfx/particles/hyper-casual-fx-200333
https://assetstore.unity.com/packages/tools/behavior-ai/monobehaviourtree-213452
https://assetstore.unity.com/packages/tools/behavior-ai/monobehaviourtree-213452
https://assetstore.unity.com/packages/3d/environments/simple-sky-cartoon-assets-42373
https://assetstore.unity.com/packages/3d/environments/simple-sky-cartoon-assets-42373
https://assetstore.unity.com/packages/3d/environments/lowpoly-environment-nature-free-medieval-fantasy-series-187052
https://assetstore.unity.com/packages/3d/environments/lowpoly-environment-nature-free-medieval-fantasy-series-187052

	Slide 1: Decision making algorithms in Battle AI creation.
	Slide 2: Player controls
	Slide 3: Introduction
	Slide 4: Decision Making Algorithms
	Slide 5
	Slide 6: Decision Algorithms used
	Slide 7: Player
	Slide 8: Steering behaviours
	Slide 9: Finite State Machine
	Slide 10
	Slide 11: Behaviour Tree
	Slide 12: Battle System
	Slide 13: Attacks
	Slide 14: Reflection
	Slide 15: Sources
	Slide 16: Assets

